Method of Laplace Transforms

To solve an initial value problem:

- (a) Take the Laplace transform of both sides of the equation.
- (b) Use the properties of the Laplace transform and the initial conditions to obtain an equation for the Laplace transform of the solution and then solve this equation for the transform.
- (c) Determine the inverse Laplace transform of the solution by looking it up in a table or by using a suitable method (such as partial fractions) in combination with the table.

In step (a) we are tacitly assuming the solution is piecewise continuous on $[0, \infty)$ and of exponential order. Once we have obtained the inverse Laplace transform in step (c), we can verify that these tacit assumptions are satisfied.

Example 1 Solve the initial value problem

(1) $y'' - 2y' + 5y = -8e^{-t};$ y(0) = 2, y'(0) = 12.

Example 2 Solve the initial value problem

(4)
$$y'' + 4y' - 5y = te^t$$
; $y(0) = 1$, $y'(0) = 0$.

TABLE 7.1 Brief Table o	f Laplace Transforms
f(t)	$F(s) = \mathscr{L}{f}(s)$
1	$\frac{1}{s}$, $s > 0$
e ^{at}	$\frac{1}{s-a}, \qquad s > a$
t^n , $n = 1, 2, \ldots$	$\frac{n!}{s^{n+1}}, \qquad s > 0$
sin bt	$\frac{b}{s^2+b^2}, \qquad s>0$
cos bt	$\frac{s}{s^2+b^2}, \qquad s>0$
$e^{at}t^n$, $n=1,2,\ldots$	$\frac{n!}{(s-a)^{n+1}}, \qquad s>a$
$e^{at}\sin bt$	$\frac{b}{(s-a)^2+b^2}, \qquad s>a$
$e^{at}\cos bt$	$\frac{s-a}{(s-a)^2+b^2}, \qquad s>a$

Example 3 Solve the initial value problem

(8)
$$w''(t) - 2w'(t) + 5w(t) = -8e^{\pi - t}; w(\pi) = 2, w'(\pi) = 12.$$

Example 4 Solve the initial value problem

(13) y'' + 2ty' - 4y = 1, y(0) = y'(0) = 0.

Discussion

- When coefficients aren't constant, you end up getting a DE in Y(s)
- Often we need the result below

In illustrating the technique, we make use of the following fact. If f(t) is piecewise continuous on $[0, \infty)$ and of exponential order, then

(12) $\lim_{s\to\infty} \mathcal{L}\{f\}(s) = 0.$

Example 4 Solve the initial value problem

(13)
$$y'' + 2ty' - 4y = 1$$
, $y(0) = y'(0) = 0$

TABLE 7.1 Brief Table of Laplace Transforms	
f(t)	$F(s) = \mathcal{L}{f}(s)$
1	$\frac{1}{s}$, $s > 0$
e ^{at}	$\frac{1}{s-a}$, $s > a$
t^n , $n = 1, 2, \ldots$	$\frac{n!}{s^{n+1}}, \qquad s > 0$
sin bt	$\frac{b}{s^2+b^2}, \qquad s>0$
cos bt	$\frac{s}{s^2+b^2}, \qquad s>0$
$e^{at}t^n$, $n=1,2,\ldots$	$\frac{n!}{(s-a)^{n+1}}, \qquad s > a$
$e^{at}\sin bt$	$\frac{b}{(s-a)^2+b^2}, \qquad s>a$
$e^{at}\cos bt$	$\frac{s-a}{(s-a)^2+b^2}, \qquad s>a$